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Abstract—Packet classification is a key network function en-
abling a variety of network applications, such as network security,
Quality of Service (QoS) routing, and other value-added services.
Routers perform packet classification based on a predefined
rule set. Packet classification faces two challenges: (1) the data
rate of the network traffic keeps increasing, and (2) the size
of the rule sets are becoming very large. In this paper, we
propose an FPGA-based packet classification engine for large
rule sets. We present a decomposition-based approach, where
each field of the packet header is searched separately. Then
we merge the partial search results from all the fields using a
merging network. Experimental results show that our design can
achieve a throughput of 147Million Packets Per Second (MPPS),
while supporting upto 256K rules on a state-of-the-art FPGA.
Compared to the prior works on FPGA or multi-core processors,
our design demonstrates significant performance improvements.

I. INTRODUCTION

The development of the Internet demands routers to support
a variety of network applications, such as firewall processing,
Quality of Service (QoS) differentiation, policy routing and
other value-added services. In order to provide these services,
routers need to classify packets [1] into different categories
based on a predefined rule set.

As the Internet continues to evolve, many emerging network
applications require high throughput to be sustained. Mean-
while, there has been a trend towards matching a large number
of rules consisting of a large number of packet header fields
(e.g., OpenFlow table lookup [2]). Thus, there are two major
challenges for packet classification: (1) the increasing demand
for high throughput, and (2) the growing size of the rule sets.
The current link rate has been pushed beyond 100Gbps [3],
which corresponds to 312MPPS for minimum packet size (40
bytes). Using existing software-based solutions to achieve such
high performance is impractical [4].

Many hardware-based packet classification engines adopt
Ternary Content Addressable Memories (TCAMs) [5].
TCAMs can perform parallel searching against all the rules
in O(1) time, while they are expensive, power-hungry, and
not scalable with respect to clock rate or circuit area [6].
Field-Programmable Gate Array (FPGA) technology has also
been widely used to accelerate many applications [7], [8].
Previous works have shown FPGA-based packet classification
engines [9], [10] can achieve very high throughput for rule sets
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of moderate size. When the rule set gets too large, off-chip
memory is exploited, incurring long memory access latency.
This significantly deteriorates the overall performance. It is
still challenging to support large rule sets on FPGA.

In this paper, we present a decomposition-based approach
on FPGA. We search all the fields independently; we merge all
the partial search results using a merging network. The main
contributions of our work are:
• We present a decomposition-based approach for packet

classification. We prototype our design on a state-of-the-
art FPGA, targeting very large rule sets.

• We search all the fields, independently, using balanced
range trees. We merge all the partial search results using
a merging network efficiently.

• We achieve 147MPPS throughput for rule sets consisting
of upto 256K rules. The post-place-and-route results
on FPGA demonstrate significant performance improve-
ments, compared to the existing FPGA-based implemen-
tations or the prior works on multi-core processors.

The rest of the paper is organized as follows. Section II
introduces the background and related works. Section III de-
scribes our algorithms; Section IV details the architecture of
our design on FPGA. We show the experimental results in
Section V. We conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

A. Multi-field Packet Classification

The classic multi-field packet classification [1] requires
packets to be classified based on 5 header fields: source/desti-
nation IP addresses (SIP/DIP), source/destination port numbers
(SP/DP), and transport layer protocol (Protocol). A rule set
consists of multiple rules; a rule is a set of matching criteria
on all the 5 fields. We denote the total number of rules as N .

Different fields require different types of matches. For
example, SIP and DIP require prefix match, SP and DP require
range match, and protocol field requires exact match. We
denote the total number of fields as M (M = 5 for multi-
field packet classification). A packet matches a rule only if all
the M header fields are matched. If any rule is matched, the
associated action is taken. In this paper, we target the multi-
match problem: when multiple rules are matched, we report
all the matches. We show an example of a rule set in Table I.

As a newer version of multi-field packet classification,
OpenFlow table lookup [2] involves matching the incoming
packet headers against up to 15 fields (e.g., metadata, ingress
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TABLE I: An example of a packet classification rule set, N = 6, M = 5

Rule ID (32-bit) SIP (32-bit) DIP (16-bit) SP (16-bit) DP (8-bit) Protocol Action

0 175.77.88.1/32 192.0.0.0/8 [0, 120) [0, 500) 0x06 Forward to port 1
1 175.77.88.0/24 192.0.96.12/32 [16, 30) [0, 655) 0x06 Forward to port 0
2 10.10.10.0/24 125.199.2.72/32 [16, 30) [200, 300) 0x11 Forward to port 2
3 10.10.10.0/24 12.13.0.0/16 [100, 120) [0, 655) 0x2F Broadcast
4 12.1.11.256/32 137.135.0.0/16 [0, 200) [20, 22) 0x3C Forward to port 0
5 12.1.11.255/32 12.13.0.0/16 [30, 220) [20, 22) 0x06 Discard

port, etc.). This is much more challenging compared to the
classic 5-field packet classification. Also, there has been a
trend of matching very large rule sets [1], [11]; this makes
packet classification even more challenging.

B. Packet Classification Algorithms

Packet classification algorithms fall into two major cate-
gories [6]: decision-tree-based algorithms and decomposition-
based algorithms.

The most well-known decision-tree based algorithms are
HiCuts [1] and HyperCuts [12]. Such algorithms treat each
rule as a hypercube in a multi-dimensional space; each packet
is viewed as a point in this space. To construct a decision-
tree, several heuristics can be exploited to recursively cut the
multi-dimensional space into smaller subspaces. A smaller
subspace involves only a small number of rules; the final
classification result can be obtained by a linear search in
this subspace. The memory consumption of a decision-tree
can be O(NM ); this is extremely expensive, especially for
OpenFlow table lookup (M = 15). Meanwhile, a decision-tree
can be very imbalanced, therefore not suitable for hardware
implementation.

Decomposition-based algorithms include two phases:
searching and merging [6], [11]. In the searching phase,
independent searches are performed on each field to obtain
the partial search result for each field. A partial search result
can be represented either as a Bit Vector (BV) or a Rule
ID Set (RIDS). In the merge phase, all intermediate results
are combined to produce final result. A BV-based approach
requires O(MN) memory and O(MN) merging time. A
RIDS-based approach requires O(MN logN) memory and
O(N) merging time. For these merging techniques, it is not
easy to overlap the merging time for multiple packets. Hence
these algorithms, when deployed on hardware accelerators,
usually result in inferior performance.

C. Prior Works on FPGA

A decision-tree can be mapped onto a pipelined architec-
ture on FPGA [4]. The implementation can achieve 80Gbps
(250MPPS) for a 10K rule set without using off-chip mem-
ory. However, since the memory consumption grows at a rate
of O(NM ), the design cannot support larger rule sets.

A class of BV-based approaches have been proposed on
FPGA [13], [14]. The FSBV approach [13] examines the
header fields bit-by-bit against the rule set and generates a

BV (as a partial result) for each bit. In a BV consisting
of N bits, a bit is set to “1” only if the packet header
matches the corresponding rule. The final classification result
is obtained by bitwise-ANDing all the BVs. An enhanced
version, StrideBV [14], can examine a stride of several bits
instead of a single bit at a time. Since FSBV and StrideBV
require O(MN) memory, they cannot support very large rule
set without using slow off-chip memory.

BV-TCAM [9] combines TCAMs and the BV algorithm for
packet classification. A TCAM is used to perform prefix and
exact match, while a multi-bit trie is used to perform source
and destination port lookup. Although the entire design on
an FPGA device consumed less than 10% of the available
logic and fewer than 20% of the available Block RAMs, this
approach cannot be easily scaled for very large rule sets since
TCAMs are very expensive.

As a decomposition-based approach, hashing can be used
to merge all the partial results [15], [16]. After the searching
phase, the partial results are used as hash keys to access a
huge hash table stored off-chip. Bloom filters [15] allow false
positive, where a linear search has to be performed on all the
returned rule IDs. Alternatively, the construction of perfect
hash functions [16] requires a memory proportional to the total
number1 of pseudo rules [15], [16]. Since the performance of
these approaches highly relies on the off-chip memory access
speed, it is not easy to scale up the resulting designs.

III. ALGORITHMS

In this section, we first introduce the data structures used in
our algorithm in Section III-A. Then we present the motivation
of our novel merging technique in Section III-B. We detail our
efficient merging network in Section III-C.

A. Range-Tree and Rule ID Set

We exploit range-tree [17] to search each packet header
field. For a field requiring range match, the major steps are
(1) to flatten all the ranges into non-overlapping subranges,
and (2) to construct a balanced binary search tree using the
subrange boundaries. For instance, Figure 1 shows an example
of the range-tree constructed from the SP field of Table I.
The non-overlapping subranges are [0, 16), [16, 30), [30, 100),
[100, 120), [120, 200), [200, 220); the balanced binary search
tree is constructed of the 7 subrange boundaries. We ignore the

1This is equivalent to the memory required for direct addressing.
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Fig. 1: Construct a range-tree for the SP field

details of this construction since it has been widely studied.
Note any prefix or exact value can be translated into a range;
hence similar steps can be applied to fields requiring prefix
match or exact match.

As discussed in Section II, it is very expensive to store
partial search results in BVs. In our approach, each leaf node
of range-tree stores a Rule ID Set (RIDS); a RIDS only
stores the rule IDs matching the corresponding subrange. For
example in Figure 1, the RIDS corresponding to the subrange
[0, 16) stores the rule IDs 0 and 4, since any input value falling
into this subrange will match Rule 0 and Rule 4 (as can be seen
in Table I). Note the RIDSs are prepared when we construct
the range-trees. To simplify the merging phase (Section III-C),
we enforce the following properties of a RIDS:

1) (Distinctness) The rule IDs are all distinct.
2) (Monotonic) The rule IDs are in ascending order.
During the searching phase, we search all the M range-

trees until we reach the leaf nodes; the RIDS corresponding
to a reached leaf node is denoted as candidate RIDS. A total
number of M candidate RIDSs are extracted as the partial
results during the searching phase.

B. Motivation

During the merging phase, M RIDSs have to be combined
into the final result. For example, suppose M = 2, and we
get two RIDSs {0, 1} and {1, 2, 3}; the final result should
be {1}, indicating the packet header matches the rule with ID
“1”. Note the number of occurrences of “1” in these 2 sets is
exactly M = 2. In general, given M RIDSs, we aim to find
all the rule IDs with a number of M occurrences.

The key ideas of our approach is to build a merging network
so that the common rule IDs from all the candidate RIDSs can
be collected in a streaming fashion. This allows us to pipeline
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Fig. 2: Stage 0 (left) and Stage 1 (right) of BM(8)
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Fig. 3: An example of merging two monotonic sequences
{1, 2, 4, 9} and {9, 5, 3, 2} using BM(8)

the merging phase and improve the overall throughput. To do
this, we (1) use a bitonic merging network [18] to merge any
2 RIDSs, and (2) merge all the M RIDSs iteratively in pairs.
The rule IDs with M occurrences can be collected easily from
a sorted sequence. Note we have arranged the rule IDs in a
RIDS in ascending order. A descending order of the rule IDs
can be obtained trivially by reversing the order of all the IDs.

C. Merging Network

1) Bitonic Merge: A sequence {x0, x1, . . . , xk−1} is
bitonic if for some cycle shift of {x0, x1, . . . , xk−1}, the
resulting sequence can be split into two subsequences, where
the first one is ascending while the second one is descending.
Note any of the two subsequences can be empty. For example,
“{1, 3, 2, 0}”, “{3, 2, 0, 1}” (cyclic shifted), and “{1, 4, 5}”
(monotonic) are all considered as bitonic sequences.

A bitonic merge network takes a bitonic sequence of k num-
bers as input, and produces a monotonic (sorted) sequence.
We denote such a bitonic merge network as BM(k), where k
denotes the size of this network. A BM(k) has log(k) stages,
indexed by i = 0, 1, . . . , log(k) − 1. Stage i consists of k

2
comparators, while the inputs/outputs are connected to the
comparators via 2i perfect shuffle networks. We show two
stages as an example in Figure 2. We show an example of
using BM(8) to merge two sorted sequences in Figure 3.

2) Neighborhood Checker: Since the two sequences to be
merged each have distinct numbers, the maximum number of
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occurrences for any number is 2. In Figure 3, if a number
appears twice (e.g., “2” or “9”), this number can be identified
by exploring the neighborhood of all the numbers.

Continuing the example of Figure 3, we show the Neighbor-
hood Checker (NC) in Figure 4. An NC for k numbers consists
of (k − 1) 2-input comparators, each checking whether the 2

input numbers are equal or not. The NC finally reports the
common numbers appearing twice.

3) Bitonic-tree: A bitonic merging network along with an
NC is only capable of collecting common numbers from
2 sorted sequences efficiently. For a total number of M
RIDSs, we exploit a tree-like merging network, and denote
this merging network as bitonic-tree. The intuition is to collect
all the common rule IDs from M RIDSs iteratively. Each node
in a bitonic-tree consists of a BM(k) and an NC; we denote
such a node as BMNC(k). We will present an example later
in Section IV.

IV. OVERALL ARCHITECTURE

We show the overall architecture of our design on FPGA in
Figure 5. In this example, we show a case where M = 4 fields
are examined; the bitonic-tree only has 2 levels. In general,
the number of levels required in a bitonic-tree is dlog(M)e.

Also, in Figure 5, the candidate RIDS in field 0 stores 8
rule IDs; the candidate RIDS in field 1 stores 6 rule IDs. A
BMNC(16) is sufficient to collect the common rule IDs from
all the (8+6) rule IDs. In general, suppose we have s0 rule IDs
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Fig. 5: Example: searching M = 4 fields using range-trees, and merging all the RIDSs using a bitonic-tree
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to be checked against another s1 rule IDs, the corresponding
BMNC(k) in the bitonic-tree must have k ≥ 2dlog(s0+s1)e.

Theorem 1: The root BMNC of the bitonic-tree reports the
common IDs appearing exactly M times in all the RIDSs.

Proof: Suppose the root node reports a common ID x
appearing more than M times, according to the pigeonhole
principle, there must be a field whose candidate RIDS stores
at least two x’s. This contradicts the distinctness property of
the RIDS (Section III-A).

Besides, since all the nodes (BMNC) in the bitonic-tree only
collect common rule IDs, a common ID x reported by the root
node must have appeared in all the M fields. Therefore, such
a rule ID must have appeared in every single candidate RIDS,
in total exactly M times.

As shown in Figure 5, to boost the throughput of our clas-
sification engine, the entire architecture is deeply pipelined.

A. Mapping Range-tree onto FPGA

To map the range-tree of field m (m = 0, 1, . . . , M − 1)
onto a pipelined architecture, we construct a group of Pro-
cessing Elements (PEs). Depending on the lookup result from
a previous PE, a PE extracts a subrange boundary from the
memory, and matches the m-th field of the input packet header
against this subrange boundary. The PEs are concatenated into
a linear pipeline, where the last PE stores all the candidate
RIDSs in this field.

In a particular field m, the number of PEs depends on
the depth of the corresponding range-tree, which in turn
depends on the number of non-overlapping subranges in this
field. In this paper, we denote the number of non-overlapping
subranges in field m as um, m = 0, 1, . . . , M − 1.

Before the merging phase, note our approach requires all
the candidate RIDSs to be ready before any two of the
candidate RIDSs can be merged. For those range-trees that
are shallow, additional delay stages have to be added. As a
result, the number of pipeline stages in all the fields is designed
uniformly to be dlog (maxm[um])e. Excluding the memory
required for storing all the RIDSs, the pipelines mapped from
all the range-trees consume a total memory of size O (

∑
um).

As a design choice for the pipelines, we choose to use
both (LUT-based) distributed RAM and Block RAM (BRAM)
available on FPGA to store all the subrange boundaries. This
helps us implement very large range-trees by exploiting all the
available memory resources on FPGA.

B. Mapping Bitonic-tree onto FPGA

As discussed in Section III-C, each node of the bitonic-tree
is a BMNC. For each node:

1) Every single stage in the bitonic merging network is
mapped onto a pipeline stage.

2) The NC is mapped onto a pipeline stage.
In a particular field m (m = 0, 1, . . . , M − 1), we denote
the maximum number of rule IDs in a RIDS as sm. The
number of common rule IDs reported by the BMNC at the
root of the bitonic-tree is at most minm[sm]. However, in
order to reserve sufficient memory for all the rule IDs, in each
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Fig. 6: Throughput with respect to N

BMNC node of our bitonic-tree, we allocate a memory of size
O (maxm[sm] · log(N)). Thus, the total memory required by
the bitonic-tree is O (maxm[sm] ·M log(N)). To handle very
large rule sets, the memory required by the bitonic-tree are
instantiated using BRAM.

V. PERFORMANCE EVALUATION

A. Experimental Setup

We conducted experiments on the state-of-the-art Xilinx
Virtex 7 FPGA (XC7VX690T, speed grade -2L). The target
platform has 433200 logic slices, 850 I/O pins and 51.6Mb
on-chip BRAMs. The performance was evaluated using Xilinx
Vivado 2014.3 development tools. We used the following
performance metrics:
• Throughput: the number of packets classified per unit

time (in MPPS).
• Resource utilization: the utilization of basic FPGA re-

sources including slice LUTs, slice registers and BRAMs.
Due to the lack of large real-life rule sets, especially for

packet classification involving more than 5 fields [10], we built
synthetic rule sets where um and sm (m = 0, 1, . . . , M −
1) could be adjusted separately. We used constrained random
packet headers as inputs to our packet classification engine;
the constraint was to enforce that at least one rule would match
the input packet header2.

In this section, we first evaluated the performance using var-
ious combinations of parameters in Section V-B, Section V-C,
Section V-D, and Section V-E. We compare our performance
results with prior works on FPGA and multi-core processors
in Section V-F and Section V-G, respectively.

B. Varying Number of Rules

We first study the impact of N on the performance by fixing
M = 4, maxm[um] = 8K, and maxm[sm] = 64. To demon-
strate the scalability of our design, we vary N from 64K to
256K (the largest to the best of our knowledge). We have
observed similar performance results for other combinations

2Reasonable because many rule sets contain “wildcard” rules; i.e., a default
action will be performed if none of the other rules matches the packet header.
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Fig. 7: Resource utilization with respect to N

of these parameters. Figure 6 and Figure 7 show the throughput
and resource utilization with respect to N , respectively.

As can be seen, our architecture maintains a high through-
put of over 177MPPS for various values of N . Since the
values of um are kept fixed, the depths of the range-trees
remain the same. Hence even when N increases, there is
only little increase with respect to the resource utilization.
Remember the total memory consumption of the bitonic-tree
is O (maxm[sm] ·M log(N)); hence a larger rule set usually
consumes more memory resources.

C. Varying Number of Subranges

Now we explore the impact of um on the performance. We
fix N = 256K, M = 4, and maxm[sm] = 64. We vary
maxm[um] from 8K to 32K in our synthetic rule sets. We
have observed similar performance results for other combina-
tions of these parameters. We show throughput and resource
utilization with respect to various values of maxm[um] in
Figure 8 and Figure 9, respectively.

We observe that as maxm[um] increases, the performance
deteriorates. This is mainly because the depths of the range-
trees have been increased. As the range-trees grow deeper,
more pipeline stages (dlog (maxm[um])e stages) are deployed.
The wire lengths of the critical paths also grow linearly with
respect to maxm[um]. This degrades the clock rate and the
throughput of our packet classification engine.

Also, for deeper trees, more resources are consumed. Note
that the BRAM utilization increases linearly with respect to
maxm[um]. This reflects the fact that the number of leaf
nodes in a range-tree can require a memory as large as
O(maxm[um]).

D. Varying Number of Rule IDs in RIDS

We explore the impact of sm in each set. We fix N = 256K,
M = 4 and maxm[um] = 8K; we vary maxm[sm] from 64
to 128. We have seen similar performance results for other
combinations of these parameters. Figure 10 and Figure 11
show the throughput and resource utilization with respect to
various values of maxm[sm], respectively. As can be seen:
• The throughput tapers as maxm[sm] increases. For larger

values of maxm[sm], more BRAMs are employed to
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store all the RIDSs; longer wires are required to connect
the BRAMs, leading to a degradation of the clock rate
achieved on FPGA.

• The resource utilization increases linearly with re-
spect to maxm[sm]. This matches our analysis that
the total memory consumption of the bitonic-tree is
O (maxm[sm] ·M log(N)).

E. Varying Number of Fields

In this subsection, we vary M from 4 to 16 for packet
classification with various numbers of fields. We fix N =
256K, maxm[um] = 8K, and maxm[sm] = 64. We have seen
similar performance results for other combinations of these
parameters. We show throughput and resource utilization with
respect to various values of M in Figure 12 and Figure 13,
respectively. As can be seen:

• The throughput tapers as M increases. When we scale
up our design on FGPA by increasing M , the routing
gets more complex; also, since our architecture is syn-
chronized to a global clock, the increasing clock skew
degrades the achievable clock rate.

• The resource consumption increases (slightly faster than)
linearly with respect to M . Note the resource consumed
by the range-trees increases linearly with respect to M ,
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while the resource consumed by the bitonic-tree increases
superlinearly with respect to M .

We compare the performance results for the 5-field packet
classification and 15-field OpenFlow Table Lookup [2]. Here,
for simplicity, we set again N = 256K, maxm[um] = 8K
and maxm[sm] = 64, although similar performance results
can be seen for other combinations of these parameters as
well. Table II shows the throughput and resource utilization of
our classification engines. The performance results agree with
our intuition and analysis.

F. Comparison with Existing FPGA-based Approaches

We compare our design with existing FPGA-based ap-
proaches in Table III. For fair comparisons, the results of prior
works (e.g., on Xilinx Virtex-5 FPGA, etc.) are all scaled up
to the state-of-the-art Xilinx Virtex-7 platform; this is done
by considering the maximum clock frequency supported on
these platforms. Besides, considering the maximum memory
capacity on these platforms, we also scale up the rule set
size for these approaches (∼ 100% resource utilization). For
all the prior works, the estimation on the throughput or the
rule set size is quite optimistic, considering many real design
constraints such as the limited number of I/O pins on FPGA.

Considering the tradeoff between the throughput and the
rule set size, in this subsection, we explore the product of the
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throughput and the number of rules supported by a specific
design as a new performance metric. Note the following two
design styles meet the same resource requirement:

1) By replicating a design α times, we can support α×
throughput for the same rule set.

2) Using the same design α times, each supporting a
different rule set, we can support in total a rule set upto
α× larger.

In Table III, we use the product of the throughput and
the number of rules as a compound performance metric;
as can be seen, our design on FPGA demonstrates at least
2.8× improvement compared with prior works. Note that this
performance improvement can be sustained even if we assume
the maximum number of non-overlapping subranges equal to
the number of rules; i.e., maxm um = N . This is a pessimistic
assumption because many fields in reality only contain a very
small number of unique values.

G. Comparison with a Multi-core Implementation

In this subsection, we compare the performance of our
implementation on FPGA with our multi-core implementation
[11]. This decomposition-based implementation was based on
range-trees and RIDSs; a state-of-the-art AMD Opteron 6278
processor was employed in this implementation. The target
platform had 16 cores, each running at 2.4GHz. Each core
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TABLE III: Performance comparison

Approach No. of Rules Throughput Throughput × No. of Rules
(×1K) (MPPS) (MPPS × 1K)

Song’s [9] BV + TCAM 1.2 ∼ 20 ∼ 24

Kennedy’s [19] Decision-tree 60 ∼ 15 ∼ 900

Pus’s [16] Decomposition + hashing 0.6 ∼ 500 ∼ 300

Ganegedara’s [14] pipelined BV 6 ∼ 275 ∼ 1650

This work Decomposition + bitonic-tree 32 ∼ 256 ≥ 147 ≥ 4704

TABLE II: 5-field and 15-field Classification

Throughput Slice LUT Slice Reg. BRAM
5-field 170MPPS 17% 8% 22%
15-field 161MPPS 73% 43% 68%
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Fig. 14: Comparison with multi-core implementation

had a 16KB L1 data cache, 64KB L1 instruction cache and
a 2MB L2 cache. A 60MB L3 cache is shared among all the
16 cores.

For both implementations, we set maxm[um] = 8K and
maxm[sm] = 64. We vary M from 4 to 16; N is chosen
to be 32K or 256K as an example. Figure 14 shows the
throughput for the two implementations. For the same rule
set size, our implementation on FPGA (this work) achieves
at least 10× throughput. As the number of fields M or the
number of rules N increases, our implementation on FPGA
sustains very high throughput while the performance on multi-
core processor deteriorates.

VI. CONCLUSION

In this paper, we presented a decomposition-based approach
to classify packets against large rule sets. We deployed range-
trees for the searching phase and a merging network for the
merging phase. We prototyped our design on a state-of-the-
art FPGA. Experimental results showed that our classification
engine sustained high throughput for very large rule sets.

Our future work includes supporting dynamic rule updates,
and a comprehensive study on the latency and power perfor-

mance of our classification engines. We plan to investigate
more performance tradeoffs among various multi-field packet
classification approaches.
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